Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

IBM and Intel Going GoFlo SOI

October 23, 2015 by  
Filed under Computing

Comments Off on IBM and Intel Going GoFlo SOI

Soitec’s CEO and board chairman has raised an eyebrow or two when he said that the iPhone 6s has multiple RF chips built on silicon-on-insulator (SOI) substrates and that Intel and IBM are using the tech for their silicon photonics push.

According to EETimes Paul Boudre, who claimed that SOI is already being used by Apple and Intel even though neither company is broadcasting it. SOI appears to be on track to major market penetration even while the rest of the industry is talking FinFETs.

GlobalFoundries general manager Rutger Wijburg told the SEMICON Europa 2015 that his outfit’s 22-nanometer “22FDX” SOI platform delivers FinFET-like performance but at a much lower power point and at a cost comparable to 28-nanometer planar technologies.

The 300-millimeter $250 million FD-SOI foundry here in the “Silicon Saxony” area of Germany, builds on 20 years of GlobalFoundries’ investments in Europe’s largest semiconductor fabs.

GlobalFoundries said it will extend Moore’s Law by using fully-deleted silicon-on-insulator (FD-SOI) transistors on wafers bought from Soitec.

Many had thought that if GloFlo’s FD-SOI gamble paid off then it would be a while before FinFET would have a serious rival. But Boudre’s claims suggests that SOI is already being used.

Customers like Intel and OEMs supplying fully-deleted silicon-on-insulator (FD-SOI) RF transistors to Apple proves that SOI and Soitec are past the cusp of the growth curve, destined to ramp up exponentially.

The problem for Soitec is no one is really talking about it. Chipzilla is committed to the FinFET, because it is higher performance than FD-SOI, even though it is higher power too.
Boudre said that it was supplying SOI wafers to Intel for other applications that don’t require high-performance. For instance, our wafers are very good for their silicon photonics projects.

Apple is already using SOI for several radio frequency (RF) chips in their front-ends, because they use 20-times less power. The iPhone is still using gallium arsenide (GaAs) for its power amplifier (PA) because it needs the high-power device for good connections, but for other RF front-end chips, and in fact for all the chips that they want to keep “always on,” the lower power consumption of FD-SOI is pushing the smartphone makers to Soitec, Boudre said.

SOI wafers cost three-times as much as bulk silicon but the cost per die is less because of the simplified processing steps including fewer masks.

Normally GPS chips run on 0.8 volts and consume over 20 milliamps, so they must be turned off most of the time. But when they are made with SOI wafers, they can run on 0.4 volts and consume only 1 milliamp. The mobile device to leave them on all the time and new and more accurate location sensing and new kinds of location-based applications can be developed.

What is amusing then is that Intel’s reason for going with FinFETs was that SOI wafers were too expensive but it did find a use for it.

GlobalFoundries’ Saxony fab will offer four varieties of its 22FDX process.

FDX-ulp for the mainstream and low-cost smartphone market. This will use body-biasing to beat FinFETs on power, but equal them in performance.

FDX-uhp for networking applications using analogue integration to match FinFETs while minimizing energy consumption

FDX-ull for ultra-low power required by wearables and Internet of Things applications. This will have a 1 picoamp per micron leakage

DDX-rfa for radio frequency (RF) analogue applications delivering 50 percent lower power and reduced system costs for LTE-A cellular transceivers, high-order multiple-input/multiple-output (MIMO) WiFi combo chips and millimeter wave radar.

Courtesy-http://www.thegurureview.net/computing-category/ibm-and-intel-going-goflo-soi.html

Can Sumsung Compete With Intel?

October 19, 2015 by  
Filed under Computing

Comments Off on Can Sumsung Compete With Intel?

Samsung is not doing that well in smartphones. To be fair, no one is, but Samsung has the ability to become something much more interesting – it could replace AMD as Intel’s rival.

Actually AMD is pretty cheap right now and if it was not for the pesky arrangement that prevents AMD’s buyer getting its x86 technology then it would have been snapped up a while ago. But with, or without AMD, Samsung could still make a good fist of chipmaking if it put its mind to it. At the moment its chipmaking efforts are one of the better things on its balance sheet.

Its high-margin semiconductor business is more than making up for the shortfall in smartphones. Selling chips to rivals would be more lucrative if they were not spinning their own mobile business. The products it have are worth $11.7 billion this year, more than half the company’s total.

Growing demand for chips and thin-film displays is probably the main reason that Samsung now expects operating profit to have reached $6.3 billion. After applying Samsung’s 16 percent corporate tax rate, its chip division is likely to bring in net income of slightly less than $10 billion.

To put this figure into perspective Intel expects to earn $10.5 billion in this year. Samsung is also sitting on a $48 billion net cash pile. Samsung could see its handset and consumer electronics business as a sideline and just focus on bumping off Intel.

The two sides of such a war would be fascinating. Intel has its roots in the PC chip market which is still suffering while Samsung is based in the mobile chip market which is growing. Intel has had no luck crossing into the mobile market, but Samsung could start looking at server and PC chips.

AMD is still dying and unable to offer Intel any challenge but there is a large market for those PC users who do not want to buy Intel. What Samsung should have done is use its huge cash pile to buy its way into the PC market. It might have done so with the IBM tech which went to Lenovo. It is still not out of the running on that front. Lenovo might be happy to sell IBM tech to Samsung.

Another scenario is that it might try to buy an x86 licence from Intel. With AMD dying, Intel is sitting on a huge monopoly for PC technology. It is only a matter of time before an anti-trust suit appears. Intel might think it is worthwhile to get a reliable rival to stop those allegations taking place. Samsung would be a dangerous rival, but it would take a while before it got itself established. Intel might do well to consider it. Of course Samsung might buy AMD which could sweeten that deal for Intel.

Samsung could try adapting its mobile chip technology for the PC/server market – it has the money to do it. Then it has a huge job marketing itself as the new Intel.

Source-http://www.thegurureview.net/computing-category/can-samsung-compete-with-intel-in-the-x86-chip-space.html

AMD Increases FM2+ Lineup

September 22, 2015 by  
Filed under Computing

Comments Off on AMD Increases FM2+ Lineup

AMD will expand its socket FM2+ chip lineup with three new parts – the A10-7890K and A8-7690K APUs, and the Athlon X4 880K CPU.

The new parts showed up on the compatibility list of socket FM2+ motherboards by BIOSTAR and it is not clear when they will be in the shops.

The architecture mentioned is “Kaveri,” but the silicon could be “Godavari” which is a Kaveri refresh.

The top of the range will be the A10-7890K, which has CPU clock speeds of 4.10 GHz out of the box. We do not know what the TurboCore frequency will be, but the current A10-7870K offers 3.90 GHz with 4.10 GHz TurboCore. The A8-7690K has a CPU clocks of 3.70 GHz. We are not sure what the iGPU clock speeds of the two chips.

The Athlon X4 880K is the most interesting. It has 4.00 GHz CPU clocks. The Athlon X4 FM2+ series lack integrated graphics that means that they are good for those who will buy discrete GPUs, on the FM2+ platform.

All three chips offer unlocked base-clock multipliers, enabling CPU overclocking.

Source-http://www.thegurureview.net/computing-category/amd-increases-fm2-lineup.html

Is Electricity In TSMC’s Future?

September 18, 2015 by  
Filed under Computing

Comments Off on Is Electricity In TSMC’s Future?

Contract chip-maker Taiwan Semiconductor Manufacturing Company (TSMC) is thinking of generating electricity in-house.

The cunning plan is to install electric generating equipment at its factories or even building its own power plant.

Apparently, the company’s electricity bill will go up by 50 per cent over the next ten years as it moves to more-advanced technologies.

Taiwan is already facing power shortage problems and TSMC is worried that its plans could be stuffed up.

TSMC has asked Taiwan’s Ministry of Economic Affairs (MOEA) and government-owned Taiwan Power Company (Taipower) about the feasibility of building its own power generators and related regulatory matters.

According to Digitimes companies can set up power generating equipment for use at their own factory sites, but the law has to be revised to allow TSMC to build its own power plant.

TSMC previously pointed out that it does not necessarily need nuclear power unless there is an alternative. We really hope that quote does not mean that TSMC is considering going nuclear.

Source-http://www.thegurureview.net/computing-category/is-electricity-in-tsmcs-future.html

Both AMD And nVidia Preparing For 14nm

September 4, 2015 by  
Filed under Computing

Comments Off on Both AMD And nVidia Preparing For 14nm

AMD and Nvidia both appear to be certain to get their “14 nm” out next year.

According to TweakTown Nvidia is apparently dotting the “I” and working out where to put in the semi-colons for its Pascal GPU using TSMC’s 16nm FinFet node. AMD rumored has been wining and dining its old chums at GlobalFoundries to use its 14nm process for its Greenland GPU.

Although these sound like different technologies the “14nm and 16nm”  is difference how you measure a transistor. The outcome of both 14 and 16 should be a fairly same sized transistor with similar power features. TSMC calls its process 16nm FinFet, while Samsung and GloFo insist on calling it 14nm FinFet.

The dark satanic rumor mill suggests that the Greenland GPU, which has new Arctic Islands family micro-architecture, will have HBM2 memory. There will be up to 32GB of memory available for enthusiast and professional users. Consumer-oriented cards will have eight to 16GB of HBM2 memory. It will also have a new ISA (instruction set architecture).

It makes sense, AMD moved to HBM with its Fury line this year. Nvidia is expected to follow suit in 2016 with cards offering up to 32GB HBM2 as well.

Both Nvidia and AMD are drawn to FinFET which offers 90 percent more density than 28nm. Both will boost the transistors on offer with their next-generation GPUs, with 17 to 18 billion transistors currently being rumored.

Source- http://www.thegurureview.net/computing-category/are-both-amd-and-nvidia-readying-to-release-a-14nm-gpu.html

AMD’s Quantum Has Intel Inside

July 1, 2015 by  
Filed under Computing

Comments Off on AMD’s Quantum Has Intel Inside

AMD’s Project Quantum PC system, with graphics powered by two of the new Fiji GPUs may have got the pundits moist but it has been discovered that the beast has Intel inside

KitGuru confirmed that the powerful tiny system, as shown at AMD’s own event, was based upon an Asrock Z97E-ITX/ac motherboard with an Intel Core i7-4790K ‘Devil’s Canyon’ processor.

Now AMD has made a statement to explain why it chose to employ a CPU from one of its competitor in what is a flagship pioneering gaming PC.

It told Tom’s Hardware that users wanted the Devil’s Canyon chip in the Project Quantum machine.

Customers “want to pick and choose the balance of components that they want,” and the machine shown off at the E3  was considered to be the height of tech sexiness right now.

AMD said Quantum PCs will feature both AMD and Intel CPUs to address the entire market, but did you see that nice Radeon Fury… think about that right now.

IT is going to be ages before we see the first Project Quantum PCs will be released and the CPU options might change. We would have thought that AMD might want to put its FinFET process ZEN CPUs in Project Quantum with up to 16 cores and 32 threads. We will not see that until next year.

Source

TSMC Moving To 16FF+ Soon

June 12, 2015 by  
Filed under Computing

Comments Off on TSMC Moving To 16FF+ Soon

TSMC’s 16nm FinFET process has barely gotten off the ground, but the foundry is already talking about 16nm FinFET Plus, which is due to launch by the end of the year.

The improved 16nm FinFET Plus (16FF+) node is supposed to deliver more efficiency and performance, making TSMC’s node more competitive compared to Samsung’s 14nm node. That is the general idea, but TSMC’s first generation 16nm node has failed to impress in terms of design wins.

TSMC president CC Wei said the new 16FF+ node already has 20 tapeouts, ten of which achieved satisfactory yield performance. Wei said the company expects up to 50 tapeouts by the end of the year. TSMC expects 16FF+ to enter commercial production in the second half of the year.

16FF+ is not the only FinFET node coming from TSMC over the next year. The company plans to introduce 16FFC for compact devices sometime in the second half of 2016. In addition, 10nm FinFET is expected to enter risk production by the end of 2015, reports Digitimes.

Source

Can TSMC Beat Samsung?

June 11, 2015 by  
Filed under Computing

Comments Off on Can TSMC Beat Samsung?

TSMC has said that it is confident that it can beat Samsung Electronics in ramping up production on its 10nm lines.

Samsung disclosed during a recent technology forum in the US that the company plans to enter mass production of chips using its 10nm FinFET process by the end of 2016,.

But in a statement TSMC claimed it could the outfit said the way things are shaping up it could beat that time table. TSMC continued that in the 10nm FinFET race, Intel will be its major competitor.

We expect to hear a bit more about TSMC’s plans at its Taiwan Technology Symposium 2015 on May 28. At the upcoming event, the foundry is expected to talk about the progress and development of its FinFET manufacturing nodes.

TSMC chairman Morris Chang remarked earlier in 2015 that TSMC expects to gain a majority of market share in the FinFET segment in 2016.

Intel is also expected to release its first chips made using 10nm process technology as early as in the middle of 2016.

Source

Can MediaTek Take On Qualcomm?

March 11, 2015 by  
Filed under Computing

Comments Off on Can MediaTek Take On Qualcomm?

While Qualcomm’s 20nm Snapdragon 810 SoC might be the star of upcoming flagship smartphones, it appears that MediaTek has its own horse for the race, the octa-core MT6795.

Spotted by GforGames site, in a GeekBench test results and running inside an unknown smartphone, MediaTek’s MT6795 managed to score 886 points in the single-core test and 4536 points in the multi-core test. These results were enough to put it neck to neck with the mighty Qualcomm Snapdragon 810 SoC tested in the LG G Flex 2, which scored 1144 points in the single-core and 4345 in the multi-core test. While it did outrun the MT6795 in the single-core test, the multi-core test was clearly not kind on the Snapdragon 810.

The unknown device was running on Android Lollipop OS and packed 3GB of RAM, which might gave the MT6795 an edge over the LG G Flex 2.

MediaTek’s octa-core MT6795 was announced last year and while we are yet to see some of the first design wins, recent rumors suggested that it could be powering Meizu’s MX5, HTC’s Desire A55 and some other high-end smartphones. The MediaTek MT6795 is a 64-bit octa-core SoC clocked at up to 2.2GHz, with four Cortex-A57 cores and four Cortex-A53 cores. It packs PowerVR G6200 graphics, supports LPDDR3 memory and can handle 2K displays at up to 120Hz.

As we are just a few days from Mobile World Congress (MWC) 2015 which will kick off in Barcelona on March 2nd, we are quite sure that we will see more info as well as more benchmarks as a single benchmark running on an unknown smartphone might not be the best representation of performance, it does show that MediaTek certainly has a good chip and can compete with Qualcomm and Samsung.

Source

AMD’s Fiji GPU Goes High Bandwidth

January 26, 2015 by  
Filed under Computing

Comments Off on AMD’s Fiji GPU Goes High Bandwidth

New evidence coming from two LinkedIn profiles of AMD employees suggest that AMD’s upcoming Radeon R9 380X graphics card which is expected to be based on the Fiji GPU will actually use High-Bandwidth Memory.

Spotted by a member of 3D Center forums, the two LinkedIn profiles mention both the R9 380X by name as well as describe it as the world’s firts 300W 2.5D discrete GPU SoC using stacked die High-Bandwidth Memory and silicon interposer. While the source of the leak is quite strange, these are more reliable than just rumors.

The first in line is the profile of Ilana Shternshain, an ASIC Physical Design Engineer, which has been behind the Playstation 4 SoC, Radeon R9 290X and R9 380X, which is described as the “largest in ‘King of the hill’ line of products.”

The second LinkedIn profile is the one from AMD’s System Architect Manager, Linglan Zhang, which was involved in developing “the world’s first 300W 2.5D discrete GPU SOC using stacked die High Bandwidth Memory and silicon interposer.”

Earlier rumors suggest that AMD might launch the new graphics cards early this year as the company is under heavy pressure from Nvidia’s recently released, as well as the upcoming, Maxwell-based graphics cards.

Source

« Previous PageNext Page »