Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

Samsung And TSMC Battle It Out

February 4, 2016 by  
Filed under Computing

Comments Off on Samsung And TSMC Battle It Out

Samsung and TSMC are starting to slug it out introducing Gen.3 14 and 16-nano FinFET system semiconductor processes, but the cost could mean that smartphone makers shy away from the technology in the short term.

It is starting to look sales teams for the pair are each trying to show that they can use the technology to reduce the most electricity consumption and production costs.

In its yearly result for 2015, TSMC made an announcement that it is planning to enter mass-production system of chips produced by 16-nano FinFET Compact (FFC) process sometime during 1st quarter of this year. TSMC had finished developing 16-nano FFC process at the end of last year. During the announcement TSMC talked up the fact that its 16-nano FFC process focuses on reducing production cost more than before and implementing low electricity.

TSMC is apparently ready for mass-production of 16-nano FFC process sometime during 1st half of this year and secured Huawei’s affiliate called HiSilicon as its first customer.

HiSilicon’s Kirin 950 that is used for Huawei’s premium Smartphone called Mate 8 is produced by TSMC’s 16-nano FF process. Its A9 Chip, which is used for Apple’s iPhone 6S series, is mass-produced using the 16-nano FinFET Plus (FF+) process that was announced in early 2015. By adding FFC process, TSMC now has three 16-nano processors in action.

Samsung is not far behind it has mass-produced Gen.2 14-nano FinFET using a process called LPP (Low Power Plus). This has 15 per cent lower electricity consumption compared to Gen.1 14-nano process called LPE (Low Power Early).

Samsung Electronics’ 14-nano LPP process was seen in the Exynos 8 OCTA series that is used for Galaxy S7 and Qualcomm’s Snapdragon 820. But Samsung Electronics is also preparing for Gen.3 14-nano FinFET process.

Vice-President Bae Young-chang of Samsung’s LSI Business Department’s Strategy Marketing Team said it will use a process similar to the Gen.2 14-nano process.

Both Samsung and TSMC might have a few problems. It is not clear what the yields of these processes are and this might increase the production costs.

Even if Samsung Electronics and TSMC finish developing 10-nano process at the end of this year and enter mass-production system next year, but they will also have to upgrade their current 14 and 16-nano processes to make them more economic.

Even if 10-nano process is commercialized, there still will be many fabless businesses that will use 14 and 16-nano processes because they are cheaper. While we might see a few flagship phones using the higher priced chips, it might be that we will not see 10nm in the majority of phones for years.

 

Courtesy-Fud

IBM and Intel Going GoFlo SOI

October 23, 2015 by  
Filed under Computing

Comments Off on IBM and Intel Going GoFlo SOI

Soitec’s CEO and board chairman has raised an eyebrow or two when he said that the iPhone 6s has multiple RF chips built on silicon-on-insulator (SOI) substrates and that Intel and IBM are using the tech for their silicon photonics push.

According to EETimes Paul Boudre, who claimed that SOI is already being used by Apple and Intel even though neither company is broadcasting it. SOI appears to be on track to major market penetration even while the rest of the industry is talking FinFETs.

GlobalFoundries general manager Rutger Wijburg told the SEMICON Europa 2015 that his outfit’s 22-nanometer “22FDX” SOI platform delivers FinFET-like performance but at a much lower power point and at a cost comparable to 28-nanometer planar technologies.

The 300-millimeter $250 million FD-SOI foundry here in the “Silicon Saxony” area of Germany, builds on 20 years of GlobalFoundries’ investments in Europe’s largest semiconductor fabs.

GlobalFoundries said it will extend Moore’s Law by using fully-deleted silicon-on-insulator (FD-SOI) transistors on wafers bought from Soitec.

Many had thought that if GloFlo’s FD-SOI gamble paid off then it would be a while before FinFET would have a serious rival. But Boudre’s claims suggests that SOI is already being used.

Customers like Intel and OEMs supplying fully-deleted silicon-on-insulator (FD-SOI) RF transistors to Apple proves that SOI and Soitec are past the cusp of the growth curve, destined to ramp up exponentially.

The problem for Soitec is no one is really talking about it. Chipzilla is committed to the FinFET, because it is higher performance than FD-SOI, even though it is higher power too.
Boudre said that it was supplying SOI wafers to Intel for other applications that don’t require high-performance. For instance, our wafers are very good for their silicon photonics projects.

Apple is already using SOI for several radio frequency (RF) chips in their front-ends, because they use 20-times less power. The iPhone is still using gallium arsenide (GaAs) for its power amplifier (PA) because it needs the high-power device for good connections, but for other RF front-end chips, and in fact for all the chips that they want to keep “always on,” the lower power consumption of FD-SOI is pushing the smartphone makers to Soitec, Boudre said.

SOI wafers cost three-times as much as bulk silicon but the cost per die is less because of the simplified processing steps including fewer masks.

Normally GPS chips run on 0.8 volts and consume over 20 milliamps, so they must be turned off most of the time. But when they are made with SOI wafers, they can run on 0.4 volts and consume only 1 milliamp. The mobile device to leave them on all the time and new and more accurate location sensing and new kinds of location-based applications can be developed.

What is amusing then is that Intel’s reason for going with FinFETs was that SOI wafers were too expensive but it did find a use for it.

GlobalFoundries’ Saxony fab will offer four varieties of its 22FDX process.

FDX-ulp for the mainstream and low-cost smartphone market. This will use body-biasing to beat FinFETs on power, but equal them in performance.

FDX-uhp for networking applications using analogue integration to match FinFETs while minimizing energy consumption

FDX-ull for ultra-low power required by wearables and Internet of Things applications. This will have a 1 picoamp per micron leakage

DDX-rfa for radio frequency (RF) analogue applications delivering 50 percent lower power and reduced system costs for LTE-A cellular transceivers, high-order multiple-input/multiple-output (MIMO) WiFi combo chips and millimeter wave radar.

Courtesy-http://www.thegurureview.net/computing-category/ibm-and-intel-going-goflo-soi.html